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Abstract

This paper provides a quantitative reverse stress test approach that takes macroe-

conomic risk factors into account. We use principal component analysis to describe

the movements of the term structure of risk-free interest rates, which, in combina-

tion with a latent systematic risk factor and an economic indicator, serve as risk

factors that drive the obligors’ asset returns. The sensitivities of the asset returns

towards these risk factors are estimated empirically and the univariate and multi-

variate distribution of the risk factors is analyzed. The proposed reverse stress test

evaluates the whole risk factor space and finds those scenarios that exactly lead to

a presumed loss. In the last step the most plausible of these scenarios is determined

and discussed. The results show that the found reverse stress test scenarios are

particularly reasonable for the assumed bank portfolio. However, the results also

show that reverse stress tests are exposed to considerable model and estimation risk

which makes numerous robustness checks necessary.
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1 Introduction

As a reaction to the financial crisis 2007-2009, regulatory authorities have strengthened

the importance of stress test methodologies. Particularly, the role of reverse stress tests

was highlighted after a number of consultative papers of the Financial Services Authority

(FSA (2008, 2009)) and the Committee of European Banking Supervisors (CEBS (2009,

2010)). Large banks are expected to perform reverse stress tests in a quantitative way.

However, up to now, no appropriate standard for this kind of stress test has evolved and

even the number of (at least published) proposals how such a test could be performed at

all is very limited.

In regular stress tests, adverse scenarios are chosen upon historical observations or

expert knowledge. Thus, although the choice may be reasonable, the employed scenarios

remain arbitrary. In contrast, in reverse stress tests, exactly those scenarios are looked

for that lead to a very unfavourable event for a bank (e. g., a very large (expected)

loss, a non-fulfillment of the capital adequacy requirements or illiquidity). In the next

step, the most plausible of these scenarios has to be found and evaluated by the bank’s

senior management (see CEBS (2009, p. 14)). Čihák (2007) calls this the ”threshold

approach”. Reverse stress testing is mathematically and conceptually challenging, in

particular, when many risk factors are relevant for the value of the bank’s portfolio and

when this portfolio is structured in a complex way with many different assets and types

of financial instruments. For n risk factors, specific scenarios out of Rn have to be found

when solving the inversion problem inherent in a reverse stress test and, for each single

scenario, the corresponding probability of occurrence has to be computed. Therefore, the

number of used risk factors has to be kept low and a framework has to be chosen that

remains numerical tractable for more sophisticated portfolios.

Most of the literature dealing with macroeconomic regular stress tests for credit

risk is based on the idea of Wilson (1997a, 1997b) and extensions thereof. Within this

type of models, macroeconomic variables are looked for that can explain the systematic

variation of default rates across time (see, e. g., Boss (2002), Sorge and Virolainen

(2006)). The current body of literature on reverse stress tests is still sparse. A discussion

of a qualitative approach based on fault trees has been presented by Grundke (2012b).

However, the essential conclusion of this paper is that a qualitative approach alone would

not work, but, at least, would have to be supported by quantitative elements. Füser et

al. (2012a, 2012b) present a very general operating plan for (mainly qualitative) reverse
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stress tests. Papers on quantitative reverse stress tests are also very rare. One approach

is developed by Grundke (2011). Employing ideas from integrated risk management,

he uses a bottom-up model based on CreditMetrics with correlated interest rates and

rating-specific credit spreads. Later, in Grundke (2012a), this approach was expanded

by more realistic assumptions, including, among others, contagion effects between

single obligors and a time-varying bank rating. Drüen and Florin (2010) argue in a

similar vein as Grundke (2011), but they do not use a full-fledged bottom-up approach.

Instead, they rather employ two separate approaches for interest rate risk and default

risk and additionally, some exogenous (not further described) functional relationship

between shifts of the term structure of risk-free interest rates and the obligors’ default

probabilities. Furthermore, there are some case studies for simply structured portfolios

with one or two risk factors (see, e. g., Liermann and Klauck (2010)). Beside this,

a dimension reduction technique that yields the most relevant (based on information

criteria) risk factors of a portfolio has been proposed by Skoglund and Chen (2009). The

most recent contribution by McNeil and Smith (2012) introduces the concept of depth to

identify the most plausible reverse stress test scenario which is called the most likely ruin

event (MLRE). In a related strange of stress test literature, the worst (in the sense of

expected losses for a given portfolio) scenario from a set of scenarios with a given plausi-

bility (for example measured by the Mahalanobis-distance) is looked for. Čihák (2007)

calls this the ”worst case approach”. An example for this approach is Breuer et al. (2008).

Our approach picks up ideas from the framework of Grundke (2011, 2012a). How-

ever, instead of performing simulation studies, we show how a quantitative reverse

stress test can be implemented empirically. Furthermore, we propose to use principal

component analysis for reducing the number of risk factors relevant for fixed-income

portfolios. This specification keeps the dimensionality of the model low and, hence,

allows us to specify and calibrate a full reverse stress test framework.

The remainder of the paper is structured as follows. In Section 2, the principal

component analysis for the term structure of risk-free interest rates is carried out and

the linear factor model describing the asset returns of the bank’s obligors is estimated

by maximum-likelihood. In Section 3, the univariate margins of the risk factors and the

multivariate dependence structure are analyzed. In Section 4, it is demonstrated how

a reverse stress test could be performed for a stylized fixed-income portfolio. Finally,

Section 5 concludes.
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2 Principal components and model estimation

Similar to Grundke (2011, 2012a), we assume that the credit quality of the bank’s obligors

is driven by their asset returns and that these asset returns are correlated with the risk-free

interest rates. Furthermore, we assume that additionally, a latent systematic credit risk

factor, a macroeconomic indicator and an idiosyncratic risk factor influence each obligor’s

asset return. The complete linear factor model for the asset return Rn,t of obligor n,

n ∈ {1, ..., N}, within the time period [t, t+ 1) is assumed to be given by

Rn,t =
√
ρn,R · Z(t) + αn ·X(t) +

p∑
j=1

ρ
′

n,Cj ,R
· Cj(t) +

√
1− ρn,R · εn,t (2.1)

where Z(t) is an i.i.d. standard normally distributed random variable representing latent

systematic credit risk, X(t) denotes the economic indicator (which later is assumed to

be the log-return of U. S. GDP and the log-return of the S&P 500, respectively), and

Cj(t), j ∈ {1, ..., p} represents the principal components of the term structure of risk-free

interest rates. The variable εn,t denotes the idiosyncratic risk of obligor n at time t and

is assumed to be an i.i.d. standard normally distributed random variable.

In order to keep the number of risk factors low, we apply principal component

analysis to explain the movements of the term structure of risk-free interest rates. Princi-

pal component analysis reduces the dimensional complexity of a dataset by an orthogonal

linear transformation of the original data into a new orthogonal space. The algorithm

of this transformation can be described as follows:1 First, a variance-maximizing linear

combination of unit length representing the first principal component is obtained. Next,

the remaining variance is computed and the second principal component is chosen. This

is done by maximizing the remaining variance under the restriction of orthogonality to

the first principal component and the standardization of unit length. This step is iterated

until the whole orthogonal space is computed (this implies the same dimensionality as

the one of the original dataset). The goal is to use just the first p principal components

that explain a sufficient amount of the variance. Empirical studies show that in the

case of the term structure of risk-free interest rates, the first two or three principal

components are able to capture almost the whole variance of returns on fixed-income

securities.2 It can be shown that the described algorithm is equivalent to calculating the

1See Golub and Tilman (2000, pp. 97-98).
2See Golub and Tilman (2000, p. 94) and in detail Litterman and Scheinkman (1991); Knez et al.

(1994).
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variance-covariance matrix and the corresponding eigenvectors and eigenvalues whereby

the eigenvectors equal the principal components. With the help of the eigenvalues, we

can observe the explained fraction of variance and, therefore, determine the number of

principal components to use.

Let rq, q ∈ {1, 2, ...,m}, be the yield-to-maturity with time to maturity tq. Then

the j-th principal component is given by

Cj =
m∑
q=1

cj,q ·∆rq (2.2)

where ∆rq denotes the change of the q-th interest rate and cj,q, q ∈ {1, 2, ...,m}, denotes

the coefficients of the j-th principal component. Due to the assumed orthogonality of

the matrix of coefficients of the principal components, the interest rate changes ∆rq,

q ∈ {1, 2, ...,m}, are given by linear combinations of the coefficients

∆rq =
m∑
j=1

cq,j · Cj. (2.3)

Further, it can be stated that the coefficients cj,1, ..., cj,m are equal to the eigenvector that

corresponds to the j-th eigenvalue of the variance-covariance matrix Σ. Thus,

Σ ·

 cj,1

...

cj,m

 = λj ·

 cj,1

...

cj,m

 (2.4)

holds true. The eigenvalues are given by the solution of

det(Σ−Λ · I) = 0 (2.5)

where I denotes a m-dimensional identity matrix and Λ a matrix with the eigenvalues on

the main diagonal and zeros otherwise. Further, it can be shown that the eigenvalue is

equal to the variance of the corresponding principal component

λj = σ2(Cj). (2.6)

For estimating the principal components, we use annually obtained yields of U. S. Treasury

Bills (3M, 6M, 1Y) and U. S. Treasury Bonds (2Y, 3Y, 5Y, 7Y, 10Y, 30Y) ranging from
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1983 to 2010. The data is provided by Datastream. To ensure stationarity, we calculate

percentage changes3 rq,t−rq,t−1

rq,t−1
, q ∈ {1, ...,m}, ∀ t ∈ {2, ..., T}. The resulting variance-

covariance matrix is shown in Table 1.

3M 6M 1Y 2Y 3Y 5Y 7Y 10Y 30Y

3M 0.2314

6M 0.2133 0.2183

1Y 0.1712 0.1815 0.1690

2Y 0.1193 0.1299 0.1305 0.1088

3Y 0.0929 0.0995 0.1084 0.0952 0.0874

5Y 0.0591 0.0612 0.0752 0.0712 0.0694 0.0597

7Y 0.0478 0.0452 0.0653 0.0649 0.0670 0.0610 0.0666

10Y 0.0354 0.0343 0.0504 0.0516 0.0535 0.0498 0.0539 0.0448

30Y 0.0238 0.0194 0.0354 0.0379 0.0417 0.0410 0.0472 0.0390 0.0361

Table 1: Variance-covariance matrix for percentage changes of yield-to-maturities for different times to
maturity.

For the variance-covariance matrix exhibited in Table 1, the eigenvectors and eigenvalues

are calculated. The following matrix shows the eigenvectors column by column:

0.4818 0.4104 0.6725 −0.2915 0.1587 0.0024 0.1455 −0.1150 −0.0507

0.4859 0.3749 −0.1861 0.3141 −0.5137 0.0638 −0.3888 0.2349 0.1257

0.4491 0.0360 −0.3701 0.3877 0.5480 −0.3315 0.3154 0.0065 0.0110

0.3514 −0.1602 −0.3606 −0.2603 −0.1269 0.3376 0.0191 −0.4393 −0.5741

0.2975 −0.2796 −0.1969 −0.4245 0.1004 0.2905 0.0048 0.0055 0.7210

0.2144 −0.3525 0.0255 −0.3013 −0.2506 −0.2687 0.2835 0.6750 −0.2595

0.1924 −0.4432 0.2378 0.0644 0.3514 −0.1024 −0.7377 0.0683 −0.1518

0.1508 −0.3750 0.1957 0.1516 −0.4426 −0.5074 0.1106 −0.5177 0.2044

0.1111 −0.3528 0.3343 0.5479 −0.0480 0.5895 0.3018 0.1015 −0.0024


.

The corresponding eigenvalues are:(
0.8125 0.1761 0.0283 0.0031 0.0018 0.0002 0.0001 0.0001 0.0000

)
.

According to the Kaiser criterion,4 which recommends to use, in case of a variance-

covariance matrix, principal components with an eigenvalue exceeding the mean of the

eigenvalues, we use the first two principal components as risk factors for the reverse stress

test (instead of all yield-to-maturities with different times to maturity). They explain an

3Otherwise, the null hypothesis that the time series contain unit roots cannot be rejected at reasonable
significance levels by the ADF-test.

4See Kaiser (1960).
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amount of 96.72% of the total variance; the first three principal components would have

explained 99.49%.5 Figure 1 visualizes the first three principal components for times to

maturity ranging from 3 months to 30 years (corresponding to the coefficients cj,q for j

∈ {1, 2, 3} in Equation 2.2).
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Figure 1: Principal components and their impact on interest rates for different times to maturity.

The principal components possess an economic interpretation:6 The first principal

component is a weighted sum of interest rate changes with the same sign for all

maturities and can be interpreted as the level of the change of the term structure.

The second principal component weights interest rate changes for short maturities

with a positive sign and interest rate changes for long maturities with a negative

sign and, thus, can be understood as the slope of the interest rate curve. The third

principal component, on the one hand, associates positive signs with short-term and

long-term interest rate changes and, on the other hand, negative signs with medium-

term interest rate changes. Therefore, it can be interpreted as a measure of the curvature.

After determining the number of relevant principal components, which is repre-

sented by the variable p, we estimate the risk factor sensitivities in the asset return

5The third principal component is mentioned and visualized due to the fact that studies modeling
stochastic movements of the term structure of risk-free interest rates by principal components use it (see,
e. g., Litterman and Scheinkman (1991); Knez et al. (1994); Heidari and Wu (2003)). Nevertheless,
for the later reverse stress test, we omit it for three reasons: First, the Kaiser criterion proposes to use
only the first two principal components. Second, the maximum-likelihood estimation with an additional
risk factor would have been more complex, and third, the evaluation of the risk factor space would have
required higher computational effort.

6See Litterman and Scheinkman (1991, pp. 57-58).
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Equation 2.1. The default data is taken from the annual default report of Standard &

Poor’s (2011a). As the historical default rates for higher (less risky) rating grades are

low and partly zero, different sensitivities are estimated only for the two broad rating

categories, Investment Grade and Speculative Grade. The historical default rates for

these two broad rating categories are shown in Figure 2.
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Figure 2: Historical default rates from 1983 to 2010.

For the two broad rating classes i ∈ {1, 2} = {Investment Grade, Speculative Grade},
the sensitivity vector (

ρi,R αi ρ
′
i,C1,R

ρ
′
i,C2,R

)
and the default barrier Ri

3 are estimated by maximum-likelihood. The principal com-

ponents are calculated from empirical observations for interest rate percentage changes

analogously to Equation 2.2

Cj(t) =
m∑
q=1

cj,q ·∆rq,t. (2.7)

The log-likelihood function is given by7

li =
T∑
t=1

ln

∫ +∞

−∞

(
Ni,t

di,t

)
qi
(
z, x(t), c1(t), c2(t)

)di,t(1− qi(z, x(t), c1(t), c2(t))
)Ni,t−di,tφ(z)dz,

(2.8)

7Estimating factor loadings in linear factor models for asset returns by maximum-likelihood (based on
default data) is a frequently employed approach in the credit risk literature (see, e. g., Frey and McNeil
(2003) and Hamerle and Rösch (2006)).
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with the rating-specific conditional default probability8

qi
(
z, x(t), c1(t), c2(t)

)
:=P

(
Rn ≤ Ri

3|Z = z,X = x(t), C1 = c1(t), C2 = c2(t)
)

=Φ

(
Ri

3 −
√
ρi,Rz − αix(t)− ρ′i,C1,R

· c1(t)− ρ
′
i,C2,R

· c2(t)√
1− ρi,R

)
.

(2.9)

The above integral is solved using methods of adaptive quadrature.9 φ(z) (Φ(z)) is the

(cumulative) density function of a standard normally distributed random variable. Ni,t

describes the number of obligors with rating grade i at time t and di,t is the number

of defaults of obligors with rating grade i at time t within the period [t, t + 1). The

log-returns of the U. S. GDP and the S&P 500, respectively, within the period [t, t + 1)

serve as the economic indicator X(t). The data is obtained from Datastream and covers

the period from 1983 to 2010.

The results of the estimation procedure for the asset return equations are summa-

rized in Table 2.10

Z(t) X(t) C1(t) C2(t)

GDP Investment Grade 0.0383 (1.61) 3.3087 (1.56) 0.1749∗∗∗ (2.60) 0.2524∗∗(1.96)

Speculative Grade 0.0557∗∗∗ (3.64) 7.8860∗∗ (3.10) 0.0963∗ (1.88) 0.1925∗ (1.73)

S&P 500 Investment Grade 0.0200 (1.16) 0.6643∗∗ (2.42) 0.1056 (1.59) 0.3217∗∗∗ (3.01)

Speculative Grade 0.0583∗∗∗ (3.63) 0.0881 (0.30) 0.1116∗∗(2.00) 0.2563∗∗ (2.28)

Table 2: Coefficients for asset returns as specified in Equation 2.1 using GDP and S&P 500 data as the
macroeconomic variable X(t) for Investment Grade and Speculative Grade. The t-statistics are presented
in parentheses. The symbols ∗,∗∗ and ∗∗∗ denote significance at 10%, 5% and 1% level.

For Investment Grade as well as for Speculative Grade, the sign for the macroeconomic

index X(t) make economic sense. For the relationship between asset returns and interest

rates, especially principal components of the interest rate, it not obvious which sign would

make economic sense: On the one hand, increased interest rates lead to more expensive

loans and therefore should be negatively related to asset returns. On the other hand,

8An additional constraint ρi,R ∈ (0, 1) ensures that we do not divide by zero or compute the square
root of negative value.

9The implementation is done using the function int of the program R which is based on the Gauss-
Kronrod quadrature (see Kronrod (1965)).

10The maximization was done using the function constrOptim in R and is regarded as numerically
stable. Calculations were performed using the Nelder-Mead method (see Nelder and Mead (1965)) with
different initial values. Numerical issues due to the improper integral were considered, too. For the
integral

∫ +∞
−∞

(
Ni,t

di,t

)
qi(z, x(t), c1(t), c2(t))di,t(1− qi(z, x(t), c1(t), c2(t)))Ni,t−di,tφ(z)dz, we substituted y =

Φ(z) and dy
dz = φ(z), respectively. This leads to the expression

∫ 1

0

(
Ni,t

di,t

)
qi(Φ

−1(y), x(t), c1(t), c2(t))di,t(1−
qi(Φ

−1(y), x(t), c1(t), c2(t)))Ni,t−di,tdy. The following optimization delivered the same result as that one
using the improper integral.
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raising (short-term) interest rates by central banks is a tool to slow booming economies

down in order to control inflation. This explanation is in line with our estimation result

in which an increase of the first and the second principal component leads to increased

(short-term) interest rates and is positively related to asset returns. The significance

of the variables depends on the model specification. Finding significant variables for

Investment Grade obligors proves as rather difficult and only two risk factors can be stated

as statistically significant in each of the two specifications.11 The situation is different,

however, for Speculative Grade obligors. All risk factors have a significant impact when

using the specification with GDP-log-return whereas three variable prove as significant in

the S&P 500 specification.

3 Marginal distributions of the systematic risk fac-

tors and multivariate dependence

For computing the probabilities of occurrence for the reverse stress test scenarios, we

need the multivariate probability distribution of the systematic risk factors of the model.

These are the latent systematic credit risk factor Z, the U. S. GDP-log-return and the

S&P 500-log-return X, respectively, and the first two principal components C1 and C2 of

the term structure of risk-free interest rates. First, we test the null hypothesis of normality

for the log-returns of the GDP, the S&P 500 and the first two principal components by

means of the Kolmogorov-Smirnov test and the Jarque-Bera test.12 The empirical data

is visualized in Figure 3 using a QQ plot. While normality seems to be justified in the

center of the distribution, the tails differ much from this assumption.
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Figure 3: Quantiles of the empirical distribution function are plotted against quantiles of the normal
distribution.

11As mentioned before, the coefficients are numerically stable and have the correct sign, but the default
data contains some observations without defaults. For this reasons, we use this specifications, but we will
draw conclusions carefully.

12The latent systematic credit risk factor Z is assumed to be standard normally distributed.
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As Table 3 shows, the results of the visual inspection are only partly confirmed by the

statistical tests. While the Kolmogorov-Smirnov test does not reject the normality as-

sumption, the Jarque-Bera test rejects the null hypothesis for the GDP-log-return, the

S&P 500-log-return and the second principal component at the 1% and 5% level, re-

spectively. The Jarque-Bera test calculates skewness and kurtosis of the empirical data

and carries them into the test statistic and, hence, quickly rejects normality in case of

supposed fat tails.13

X (GDP) X (S&P 500) C1 C2

D 0.1719 0.1397 0.1764 0.1132

p-value(D) 0.34 0.5964 0.3108 0.8266

JB 17.8638∗∗∗ 15.5634∗∗∗ 3.6383 7.3797∗∗

p-value(JB) 0.0001321 0.0004173 0.1622 0.02498

Table 3: p-values and test statistics of the Kolmogorov-Smirnov test and the Jarque-Bera test for empirical
observations of the risk factors. The symbols ∗,∗∗ and ∗∗∗ denote significance at 10%, 5% and 1% level.

In order to take into account this kind of model risk when carrying out the reverse stress

test, we proceed as follows. On one hand, we assume normality of all four systematic

risk factors. While the latent systematic credit risk factor Z is assumed to be standard

normally distributed, the mean and the variance of the other systematic risk factors are

estimated from the data by the method of moments. This yields for the mean

µ̂ =
(
µ̂X(GDP) µ̂X(S&P 500) µ̂C1 µ̂C2

)
=
(

0.0124 0.0792 −0.0330 0.0512
)

(3.1)

and for the variance

σ̂2 =
(
σ̂2
X(GDP) σ̂2

X(S&P 500) σ̂2
C1

σ̂2
C2

)
=
(

7.1 · 10−5 0.0304 0.8125 0.1761
)
. (3.2)

On the other hand, we employ extreme value theory to take extreme tail events into

account. More precisely, we use methods based on threshold exceedances for the tails of

those risk factors for which normality was rejected by the Jarque-Bera test. Tail events

are especially important for us since we want to capture extreme scenarios and calculate

downside risk measures. The Jarque-Bera test rejects normality for the GDP-log-return,

S&P 500-log-return and for the second principal component. To take this into account,

we assume the left tail of the distribution of GDP-log-returns, S&P 500-log-return, and

13Figure 3 shows that the data for GDP-log-returns includes exactly one outlier (realization in 2009),
the same is true for the data of the S&P 500-log-returns (realization in 2008) and the second principal
component (realization in 2009) that also include one outlier. When omitting these outliers, we could
not reject normality for all risk factors at reasonable significance levels.
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both tails of the distribution of the second principal component to follow the generalized

Pareto distribution (GPD).14

The GPD quantifies the conditional distribution of excesses of a random variable

X over a threshold u and is given by 15

P (X − u ≤ y|X > u) = Gξ,β(y) =

1−
(
1 + ξy

β

)− 1
ξ , ξ 6= 0

1− exp {− y
β
} , ξ = 0

(3.3)

where β > 0 is referred to as the shape and ξ as the scale parameter. In case of ξ > 0,

fat tails are present.

The GPD tail and the normally distributed center are connected by the threshold

u which is determined by mean excess plots.16 The threshold u has to be chosen in such

a way that the graph of the mean excess function for u
′
> u is (approximately) linear.17

Figure 4 shows the mean excess plots for the left tail of the GDP-log-return, for the left

tail of the S&P 500-log-return and for the left as well as right tail of the second principal

component.
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Figure 4: Mean excess plots for left tail of GDP-log-return (first), for left tail of S&P 500-log-return
(second) and the left as well as right tail of the second principal component (third, fourth). The dashed
line indicates the 95% confidence level. Data for the GDP, S&P 500 and the left tail of the second
principal component was transformed by multiplication with −1.

14Modeling the right tail of the distribution of the GDP-log-return and the S&P 500-log-return is not
necessary because we are interested in scenarios generating a sufficiently large loss. Thus, due to the
positive sign of the asset return sensitivity with respect to the GDP-log-return and the S&P 500-log-
return, large GDP or S&P 500-log-return increases are less relevant. The second principal component, in
contrast, has an ambiguous effect on losses because it weights interest rate changes with a short time to
maturity with a positive sign and interest rate changes with a long time to maturity with a negative sign.
The net effect depends on the portfolio sensitivities towards interest rates for different times to maturity
and, therefore, both tails should be modeled by the GPD.

15See McNeil et al. (2005, p. 275).
16These are graphs that map for every u a mean excess function E[X − u|X > u] (see, e. g., Ghosha

and Resnick (2010)). For an application, see, e. g., Gourier et al. (2009).
17This is required due to the linearity of the mean excess function of the GPD.
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In Figure 4, it is notable that a threshold of around 0.00 for the GDP-log return and a

threshold of around −0.2 for the S&P 500-log return are reasonable choices.18 For the tails

of the second principal component, the excess return function seems to be linear when

passing 0.5 (−0.5, respectively). As the dataset consists of only 28 observations, we have

to choose the thresholds in such a way that on one hand, they match with the mean excess

plots, and on the other hand, that estimation yields plausible results for the parameters of

the GPD. For this, the estimation should be based on at least three observations. These

considerations let us choose the threshold u = 0.00 (GDP-log-return, left tail), u = −0.13

(S&P 500-log-return, left tail), ul = −0.35 (second principal component, left tail) and

ur = 0.35 (second principal component, right tail). The parameters of the GPD are

shown in Table 4.19

ξ β

X (GDP, left tail) 0.5703 0.0032

X (S&P 500, left tail) 0.2139 0.1315

C2 (left tail) 0.7779 0.1196

C2 (right tail) 0.2257 0.1900

Table 4: Estimated parameters of GPD.

The resulting cumulative density function F2(x) for the GDP-log return and the S&P

500-log-return, respectively, is given by

F2(x) =

Φ(u)
(
1 + ξ |x−u|

β

)− 1
ξ , x < u

Φ(x) , x ≥ u .
(3.4)

The resulting cumulative density function F4(c2) for the second principal component is

F4(c2) =


Φ(ul)

(
1 + ξ |c2−u

l|
β

)− 1
ξ , c2 < ul

Φ(c2) , ul ≤ c2 ≤ ur

1− (1− Φ(ur))
(
1 + ξ c2−u

r

β

)− 1
ξ , c2 > ur .

(3.5)

QQ plots for the calibrated GPD are shown in Figure 5.

18The data was transformed by multiplication with −1.
19The parameters for the GDP-log-return were estimated by maximum likelihood and for S&P 500-

log-return by probability weighted moment method.
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Figure 5: QQ plots for the left tail of the GDP-log-return (first), for the left tail of the S&P 500-log-return
(second) and the left as well as the right tail of the second principal component (third, fourth).

In Figure 6, we visualize the left GPD tail and, in comparison, the left tail of a normal

distribution, estimated with GDP-log-return and S&P 500-log-return data, respectively.
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Figure 6: Left tail of the GDP-log-return and the S&P 500-log-return in comparison when modeled with
GPD and normal distribution.

For extreme realizations, the GPD assigns higher probabilities than the normal distribu-

tion. At the threshold, in order to obtain a continuous cumulative density function, the

GPD equals the cumulative density function of the normal distribution. A comparison of

the tails of the second principal component when modeled with the GPD and the normal

distribution, respectively, can be seen in Figure 7.
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The figure shows that the GPD assigns higher probabilities for extreme realizations than

the normal distribution would do on both tails.

Next, we analyze the empirical dependence structure between the systematic risk

factors. For this, we do not have to take into account the latent systematic credit risk

factor Z because this factor is assumed to be independent from all other variables.

Multivariate dependence structures between margins can be modeled by so-called

copula functions. Let F be a d-dimensional cumulative density function with margins

F1, F2, ..., Fd. Sklar’s theorem20 states that a copula function C : [0, 1]d → [0, 1] exists

such that for all x1, x2, ..., xd ∈ R ∪ {−∞,+∞}

F (x1, x2, ..., xd) = C
(
F1(x1), F2(x2), ..., Fd(xd)

)
(3.6)

holds true. Thus, multivariate dependence structures can be isolated from the margins

and are even unique in case of continuous margins.21

Two popular types of copula functions are the elliptical and Archimedean copulas.

Elliptical copulas, such as the normal copula and the t-copula, are derived from elliptical

distributions. This type of copulas is characterized by a symmetry of the dependence

structure and especially (in case of the t-copula) by a symmetry between the lower

and upper tail dependence.22 In contrast, Archimedean copulas allow for asymmetric

dependence structures. Prominent representatives are the Gumbel, Clayton and Frank

copulas.23

Goodness-of-fit tests describe how well empirical observations fit a supposed statis-

tical model. We employ an approach based on the empirical copula. These approaches

measure the deviation between the empirical copula and the supposed copula. The

null hypothesis contains the supposed copula H0 : C ∈ C0 which is compared with the

empirical copula

CT (u) =
1

T

T∑
t=1

1(Ût,1 ≤ u1, ..., Ût,d ≤ ud) with u = (u1, ..., ud) ∈ [0, 1]d (3.7)

20See Sklar (1959).
21See McNeil et al. (2005, p. 186).
22The normal copula does not exhibit tail dependence.
23A detailed introduction to copula functions is given, for example, in McNeil et al. (2005) or Nelson

(2006).
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where Ût = (Ût,1, . . . , Ût,d) = R̂t

T+1
are the empirical pseudo observations and R̂t denotes

the vector of ranks of all components at time t. The empirical copula is compared with

the estimated copula Cθ̂T under the null hypothesis. For estimating the parameter vector

θ̂T of the supposed copula, a variety of methods exists. We use the canonical maximum

likelihood estimation (also called maximum pseudo-likelihood).24 For this method, there

is no need to specify the parametric form of the marginal distributions because these

are replaced by the empirical marginal distributions. Thus, only the parameters of the

copula function have to be estimated by maximum pseudo-likelihood (see Cherubini et

al. (2004, p. 160)). The employed goodness-of-fit test based on the empirical copula uses

the Cramér/von Mises25 test statistic which is given by

ST = T

∫
[0,1]d

(
CT (u)− Cθ̂T (u)

)2
dCT . (3.8)

High values of ST correspond with a high distance between the empirical and the supposed

copula and, hence, lead to a rejection of the null hypothesis. In simulation-based power

comparison studies, this method delivers more reliable results than many other goodness-

of-fit test procedures (see, e. g., Berg (2009) and Genest et al. (2009)). As the probability

distribution of the test statistic ST under the null hypothesis is unknown, it has to be

computed by bootstrapping.26 For this, we perform 100,000 simulation runs. Table 5

shows the results of the goodness-of-fit test based on the empirical copula for different

copula functions.

GDP S&P 500

Cramér/von Mises p-value Cramér/von Mises p-value

Normal 0.0432 0.5435 0.0478 0.4599

t2df 0.0659 0.1760 0.0730 0.1094

t3df 0.0610 0.2089 0.0694 0.1195

t4df 0.0578 0.2474 0.0662 0.1410

t5df 0.0555 0.2455 0.0636 0.1673

Gumbel 0.0825∗∗ 0.0455 0.0667 0.1311

Clayton 0.0514 0.2908 0.0496 0.3409

Frank 0.0793∗ 0.0910 0.0842∗ 0.0810

Table 5: Cramér/von Mises test statistics and p-values for different copula functions. The symbols ∗,∗∗

and ∗∗∗ denote significance at 10%, 5% and 1% level.

As can be seen, we can only reject the Frank copula at a significance level of 10% for

the GDP-log-return and the S&P 500-log-return specification and, in case of GDP-log-

return, the Gumbel copula at a significance level of 5%. Further conclusions which copula

describes the multivariate dependence structure best cannot be drawn. That is why we

24We apply the function gofCopula of the package copula in R in order to estimate the copula parameters
as well as to perform the goodness-of-fit test.

25See Genest et al. (2009, p. 201)
26See, for a detailed description, Genest and Rémillard (2008).
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use the Akaike Information Criterion (AIC) in order to find the best compromise between

good approximation and compact dimensioning. It is given by

AIC = −2 · l + 2 · k (3.9)

where l stands for the log-likelihood function and k describes the number of estimated

parameters. Due to the fact that the AIC tends to overparameterize the model,27 we

additionally apply the Bayesian Information Criterion (BIC)

BIC = −2 · l + k · ln {T} (3.10)

where the added parameter T represents the sample size. The results of the AIC and BIC

statistics are summarized in Table 6.28

Normal t2df t3df t4df t5df Clayton Gumbel Frank

GDP ML 3.0151 5.0808 5.0902 4.8397 4.6077 1.7631 0.1018 0.1762

AIC -0.0302 -2.1616 -2.1804 -1.6794 -1.2154 -1.5261 1.7964 1.6476

BIC 3.9664 3.1672 3.1484 3.6494 4.1135 -0.1939 3.1287 2.9798

S&P 500 ML 0.7611 1.9542 2.1710 2.0222 1.8572 0.3467 - -

AIC 4.4778 4.0916 3.6581 3.9556 4.2856 1.3066 - -

BIC 8.4744 9.4204 8.9869 9.2844 9.6144 2.6382 - -

Table 6: Maximum pseudo-likelihood and information criterions for different copulas.

For the GDP-log-return specification, the t-copula with 3 degrees of freedom yields the

lowest AIC value. The BIC, however, implies to choose the Clayton copula, which requires

only one parameter.29 In case of the S&P 500-log-return specification, the optimal choice

for both, AIC and BIC, is the Clayton copula. Thus, we also face model risk on the

level of the multivariate dependence between the systematic risk factors. We take this

into account by carrying out the reverse stress test for both copula specifications. The

estimated parameters and their significance for the chosen copulas are shown in Table

7.30 As can be seen, only one parameter estimate is significant, which illustrates the

considerable estimation risk (on top of the model risk) that we face when performing a

reverse stress test.

27See Carter Hill et al. (2011, p. 238).
28Numerical problems prevent the calculation of parameters of the Gumbel and the Frank copula.

Since the goodness-of-fit in case of the GDP-log-return specification was poor, we neglect these copula
functions for S&P 500-log-return specification.

29The Clayton copula benefits of its sparse parametrization and the comparatively good fit, while, on
the one hand, the elliptical copulas are punished due to their high number of parameters and, on the
other hand, the other Archimedean copulas possess a much worse fit.

30The copula parameters and their significance were estimated by maximum pseudo-likelihood and by
inverting Kendall’s Tau (see, e. g., McNeil et al. (2005, pp. 228-237)) using the functions gofCopula and
fitCopula of the package copula in R. Since the estimators deviated less than the standard error of each
other, we only employed the maximum pseudo-likelihood estimators. The usage of different estimation
techniques takes the estimation uncertainty into account and serves as an internal robustness check.
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Estimate Standard error p-value

GDP, t-copula ρX,C1
0.4196∗∗ 0.2046 (2.0512) 0.0402

ρX,C2
0.0603 0.2440 (0.2473) 0.8047

ρC1,C2
-0.2509 0.1770 (-1.4182) 0.1561

GDP, Clayton copula θ 0.3783 0.2316 (1.6334) 0.1024

S&P 500, Clayton copula θ 0.1302 0.1641 (0.7934) 0.4276

Table 7: Copula parameters and their significance. The t-statistics are presented in parentheses. The
symbols ∗,∗∗ and ∗∗∗ denote significance at 10%, 5% and 1% level.

Figure 8 illustrates random draws of the t-copula with 3 degrees of freedom for the GDP-

log-return specification and of the Clayton copula for the GDP-log-return as well as S&P

500-log-return specification with parameters estimated by maximum pseudo-likelihood.
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Figure 8: The first and second figure show the t-copula with 3 degrees of freedom and the Clayton copula
for the GDP-log-return specification in comparison. The third figure shows random draws of the Clayton
copula for the S&P 500-log-return specification.

The t-copula enables us to model lower and upper tail dependence and, hence, assumes

an increased dependence in boom and bust cycles. The Clayton copula, in contrast,

exhibits only lower tail dependence and is therefore well suited to model an increased

dependence of joint low tail events in times of crisis.

Next, the derived information on the marginal distributions of the systematic risk

factors and on their multivariate dependence structure is used to simulate the empirical

distribution functions of the obligors’ asset returns (as specified in Equations 2.10

and 2.11). Analogously to CreditMetrics (where standard normally distributed asset

returns are assumed), the simulated empirical distribution functions for the asset returns

of initially Investment Grade and Speculative Grade, respectively, rated obligors are

employed for deriving asset return thresholds that correspond to specific rating grades

at the end of the risk horizon of one year. For the reverse stress test, we need migration

and default thresholds for an initial AA and BB rating grade because these are the

assumed homogeneous credit qualities of the bank’s obligors. We assume that the

asset return distributions for these two rating grades are equal to those of the broader
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rating categories Investment Grade and Speculative Grade, respectively. The necessary

migration probabilities over a one-year risk horizon are provided by Standard & Poor’s31

and summarized in Table 8.

AAA AA A BBB BB B C-CCC Default

AAA 90.86% 8.35% 0.56% 0.05% 0.08% 0.03% 0.05% 0.00%

AA 0.59% 90.14% 8.52% 0.55% 0.06% 0.08% 0.02% 0.02%

A 0.04% 1.99% 91.64% 5.64% 0.40% 0.18% 0.02% 0.08%

BBB 0.01% 0.14% 3.96% 90.49% 4.26% 0.71% 0.16% 0.27%

BB 0.02% 0.04% 0.19% 5.79% 83.97% 8.09% 0.84% 1.05%

B 0.00% 0.05% 0.16% 0.26% 6.21% 82.94% 5.06% 5.32%

C-CCC 0.00% 0.00% 0.22% 0.33% 0.97% 15.20% 51.24% 32.03%

Table 8: Migration probabilities based on Standard & Poor’s (2011a).

We perform 1,000,000 draws in order to determine the empirical distribution functions of

the obligors’ asset returns. Afterwards, the default and migration thresholds are chosen

in such a way that they coincide with the appropriate (corresponding to the default

and migration probabilities for initially AA- and BB-rated obligors that are presented in

Table 8) quantiles of the empirical distribution functions of the obligors’ asset returns.

The results are summarized in Table 9.32

GDP Thresholds for obligors with initial rating grade AA

Default C-CCC B BB BBB A AA AAA

t-copula, normal ≤ -3.56 (-3.56,-3.36] (-3.36,-3.03] (-3.03,-2.90] (-2.90,-2.42] (-2.42,-1.30] (-1.30,2.60] > 2.60

t-copula, GPD ≤ -7.29 (-7.29,-4.53] (-4.53,-3.26] (-3.26,-3.07] (-3.07,-2.48] (-2.48,-1.31] (-1.31,2.60] > 2.60

Clayton, normal ≤ -3.54 (-3.54,-3.36] (-3.36,-3.06] (-3.06,-2.92] (-2.92,-2.45] (-2.45,-1.31] (-1.31,2.62] > 2.62

Clayton, GPD ≤ -8.18 (-8.18,-5.20] (-5.20,-3.39] (-3.39,-3.16] (-3.16,-2.53] (-2.53,-1.33] (-1.33,2.62] > 2.62

Thresholds for obligors with initial rating grade BB

Default C-CCC B BB BBB A AA AAA

t-copula, normal ≤ -2.22 (-2.22,-1.99] (-1.99,-1.19] (-1.19,1.67] (1.67,2.93] (2.93,3.34] (3.34,3.67] > 3.67

t-copula, GPD ≤ -2.26 (-2.26,-2.02] (-2.02,-1.20] (-1.20,1.67] (1.67,2.93] (2.93,3.34] (3.34,3.67] > 3.67

Clayton, normal ≤ -2.24 (-2.24,-2.00] (-2.00,-1.20] (-1.20,1.67] (1.67,2.95] (2.95,3.37] (3.37,3.70] > 3.70

Clayton, GPD ≤ -2.29 (-2.29,-2.04] (-2.04,-1.21] (-1.21,1.67] (1.67,2.95] (2.95,3.37] (3.37,3.70] > 3.70

S&P 500 Thresholds for obligors with initial rating grade AA

Default C-CCC B BB BBB A AA AAA

Clayton, normal ≤ -3.56 (-3.56,-3.35] (-3.35,-3.05] (-3.05,-2.91] (-2.91,-2.43] (-2.43,-1.29] (-1.29,2.63] > 2.63

Clayton, GPD ≤ -9.87 (-9.87,-5.85] (-5.85,-3.49] (-3.49,-3.22] (-3.22,-2.54] (-2.54,-1.32] (-1.32,2.64] > 2.64

Thresholds for obligors with initial rating grade BB

Default C-CCC B BB BBB A AA AAA

Clayton, normal ≤ -2.32 (-2.32-2.09] (-2.09,-1.29] (-1.29,1.59] (1.59,2.85] (2.85,3.27] (3.27,3.58] > 3.58

Clayton, GPD ≤ -2.37 (-2.37,-2.12] (-2.12,-1.30] (-1.30,1.59] (1.59,2.86] (2.86,3.27] (3.27,3.59] > 3.59

Table 9: Default and migration thresholds for initial rating grades AA and BB for normal marginal
distributions with/without GPD tails and for different copulas.

31Data was adjusted for rating withdrawals.
32We use the simulated default threshold instead of the estimated one in Equation 2.8 and 2.9.
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4 Performing the reverse stress test

Analogously to Grundke (2011, 2012a), for demonstrating the usage of the modeling

framework and for performing a reverse stress test, we assume a stylized bank portfolio

that exclusively consists of assets and liabilities structured as zero coupon bonds. The

bank pursues a strategy of positive maturity transformation, whereby it is assumed that

the term structure of the bank’s assets and liabilities does not vary across time. Thus,

value variations caused by a decreasing time to maturity are not considered. The assumed

cash flow profile is illustrated in Figure 9.
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Figure 9: Cash flows of assets and liabilities of the stylized bank.

All positions n ∈ {1, . . . , N} on the asset side are assumed to be issued by different

obligors with initially equal default probability. They have a standardized face value of

one and a time to maturity of Tn ∈ {1, . . . , 12}.

The value of a defaultable zero-coupon bond at the risk horizon H issued by obligor n

who is rated as ηnH ∈ {1, 2, 3, 4, 5, 6, 7} = {AAA, AA, AA, BBB, BB, A, C-CCC} at

the risk horizon H is given by

Bd(C1(H), C2(H), ηnH , H, Tn) = exp {−(R(C1(H), C2(H), H, Tn) + SηnH (H,Tn)) · Tn}
(4.1)

where R(C1(t), C2(t), H, Tn) denotes the stochastic risk-free interest rate at the risk hori-

zon H for a time to maturity of Tn, which is calculated from the last obtained empirical

term structure of risk-free interest rates and the first two principal components by

R(C1(H), C2(H), H, Tn) = rqn,t · (1 + ∆rqn) = rqn,t ·
(
1 +

2∑
j=1

cqn,j · Cj(H)
)

(4.2)
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where qn denotes the (if necessary, linearly interpolated) time to maturity of the ob-

served fixed-income products matching obligor’s n time to maturity Tn. The expression

SηnH (H,Tn) denotes the non-stochastic credit spread for a time to maturity of Tn for rat-

ing grade ηnH at the risk horizon H. Credit spread data is provided by Datastream and

obtained from straight U. S. corporate bonds which have (as well as our assumed bank

portfolio) a time to maturity up to 2024. The credit spread is calculated as the yield

difference of the mid price over a similar sovereign bond.33 Bonds with a negative credit

spread were omitted,34 half notches were upgraded (in case of -) or, respectively, down-

graded (in case of +). Finally, 2,350 bonds remained. For every rating grade, the credit

spread was calculated as the median to ensure an increasing credit spread with worsening

rating grade. Table 10 shows the median credit spreads for all rating grades.

Rating No. of bonds Credit spread (in bps)

AAA 17 59

AA 57 91

A 639 132

BBB 779 208

BB 348 465

B 355 670

C-CCC 155 959

Table 10: Rating-specific median credit spreads.

To model the recovery payment to the bank in the case of a default of an obligor,

we apply a modified recovery-of-treasury assumption.35 In the case of a default

of obligor n, the minimum of a beta-distributed fraction δn with the parameters

µ = 0.51836 and σ = 0.389 of a risk-free, but otherwise identical, zero-coupon bond,

and the value of the bond without any rating transition of the obligor between 0 and

H, is paid. This convention ensures that the payment in case of a default is never

larger than the value of the bond before. The recovery rates are assumed to be in-

dependent across issuers and independent from all other stochastic variables of the model.

33Datastream uses a linear combination of sovereign bonds in order to match the maturities of corporate
bonds exactly.

34A negative spread can be explained through low liquidity shortly before the maturity date. If a bond
is not traded on a day, the last observed price is taken as the current price. Therefore, the bond price
does not converge against the face value, and, for bonds priced above their face value, a negative yield
(and a negative credit spread) can be calculated.

35See Grundke (2011, 2012a)
36The mean and the standard deviation of the beta-distributed recovery rate equal Standard & Poor’s

mean and standard deviation of the recovery rate of senior unsecured bonds during 1987 to 2011 (see
Standard & Poor’s (2011b)).
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The value of the positions v ∈ {1, . . . , V } on the liability side are given by

Bl(C1(H), C2(H), H, Tv) = exp {−(R(C1(H), C2(H), H, Tv) + SηAA(H,Tv)(H,Tv)) · Tv}.
(4.3)

This representation uses the (admittedly strong) assumption that the bank is initially

rated as AA and is not exposed to migration risk until the risk horizon.37

To simplify calculations, we impose an homogeneity assumption with respect to the credit

quality of the bank’s asset portfolio: The obligors on the asset side are assumed to be

exclusively rated as AA (ηn0 = AA ∀ n ∈ {1, ..., N}) or BB (ηn0 = BB ∀ n ∈ {1, ..., N}),
respectively.

The market value of the bank’s equity at the risk horizon H is given by the dif-

ference between the sum of the market values of the assets and the sum of the market

values of the liabilities at the risk horizon H:

VP (H) =
N∑
n=1

Bd(C1(H), C2(H), ηnH , H, Tn)−
V∑
v=1

Bl(C1(H), C2(H), H, Tv). (4.4)

The initial market value of the bank’s equity in t = 0 amounts to 236.32 (with a

corresponding equity-to-asset ratio of 29.05%) in the case of initially AA-rated obligors

and to 51.26 in case of initially BB-rated obligors (with a corresponding equity-to-asset

ratio of 8.16%). These values can be understood as the bank’s capital buffer B.

In order to perform the actual reverse stress test, a grid search in the four-dimensional

space of the systematic risk factors is done. For each grid point, we calculate the

conditional value-at-risk of the bank’s equity value at the risk horizon H by Monte-Carlo

simulation with S = 1, 000 draws.38 For each systematic risk factor, the grid search

is carried out within the interval [µ − 4 · σ, µ + 4 · σ], which is split into equally-sized

subintervals. This corresponds to an evaluation of over 99.99% of the probability space

in the case of normally distributed margins and over 98.30% in case of heavier GPD tails.

We choose a step size of 0.5 · σ and, therefore, get 17 equidistant grid points per risk

factor. From this follows that we have to evaluate 174 = 83, 521 grid points and perform

37For an alternative modeling with time-varying bank rating, see Grundke (2012a). With a time-varying
bank rating, care has to be taken to avoid circularity problems.

38The idiosyncratic risk is the only source of uncertainty in case of the conditional distribution. There-
fore, the small number of Monte-Carlo simulation runs is sufficient.
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for each grid point a Monte-Carlo simulation to compute the conditional value-at-risk.39

As in Grundke (2011, 2012a), a scenario ω = (z, x, c1, c2) is classified as a reverse

stress test scenario when the existing capital buffer B is consumed by a decrease of the

expected equity value at the risk horizon H and by the respective conditional economic

capital requirement. Thus, a bank’s default is understood as a non-fulfilment of the

economic capital requirements according to the second pillar of Basel II. When the

value-at-risk at a confidence level of α is used as an economic capital measure and

is defined as the difference between the conditional expected equity value at the risk

horizon H and the (1 − α)-quantile of the conditional probability distribution of the

bank’s equity value, the most likely reverse stress test scenario is given by

arg max
ω∈Ω∗

P (ω)

with Ω∗ = {ω ∈ Ω|E[VP (H)]− E[VP (H)|ω]︸ ︷︷ ︸
=expected loss, if ω occurs.

+E[VP (H)|ω]− q1−α(VP (H)|ω)︸ ︷︷ ︸
=V aRα,H(VP (H)|ω)

= B}

= {ω ∈ Ω|E[VP (H)]− q1−α(VP (H)|ω) = B}. (4.5)

The probability that a scenario occurs is computed as follows40

P (z− < Z ≤ z+, x− < X ≤ x+, c−1 < C1 ≤ c+1 , c
−
2 < C2 ≤ c+2 )

=

∫ z+

z−

∫ x+

x−

∫ c+1

c−1

∫ c+2

c−2

f(z, x, c1, c2)dz dx dc1 dc2,

=(F1(z
+)− F1(z

−)) ·
(
C(F2(x

+), F3(c
+
1 ), F4(c

+
2 ))− C(F2(x

+), F3(c
+
1 ), F4(c

−
2 ))

− C(F2(x
+), F3(c

−
1 ), F4(c

+
2 ))− C(F2(x

−), F3(c
+
1 ), F4(c

+
2 ))

+ C(F2(x
+), F3(c

−
1 ), F4(c

−
2 )) + C(F2(x

−), F3(c
+
1 ), F4(c

−
2 ))

+ C(F2(x
−), F3(c

−
1 ), F4(c

+
2 ))− C(F2(x

−), F3(c
−
1 ), F4(c

−
2 ))
)

(4.6)

where C denotes the applied copula function, F1(z), F2(x), F3(c1), F4(c2) denote the

margins of the systematic risk factors and f denotes the joint density function of the

39A finer grid would have increased the computation time considerably.
40The expression for calculating probabilities on multi-dimensional intervals can be found in Mathar

and Pfeifer (1990, p. 41). The computation of each single probability term is done using the function
pcopula of the package copula in the program R. In order to calculate probabilities, pcopula refers to
the function pmvt of the package mvtnorm which uses randomized Quasi-Monte-Carlo methods (see, e.
g., Genz and Bretz (1999, 2002)). As the assigned probabilities on the edge of the considered part of
the support are very low, we can get, due to numerical issues, implausible results, especially negative
probabilities. To solve this problem, we calculate probabilities in case of the t-copula as the mean over
several repetitions.
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four systematic risk factors Z, X, C1 and C2.

The border points of the intervals in the above integral are given by(
z± x± c±1 c±2

)
=
(
z x c1 c2

)
± 0.5 · factor-specific step size. (4.7)

Figure 10 illustrates this specification for the three dependent systematic risk factors X,

C1 and C2.

Figure 10: Specification of border points.

As described before, to consider model risk, the reverse stress test is performed, on the

one hand, for the GDP-log-return specification with a t-copula and a Clayton copula

dependence structure and, on the other hand, for S&P 500-log-return specification with

a Clayton copula dependence structure. The risk factors are assumed to be (marginally)

normally distributed and, respectively, to have heavier GPD tails. Together with the

two assumed initial credit qualities (AA and BB, respectively), this yields 12 test

specifications. The risk horizon is H = 1 and the confidence level of the value-at-risk

is set to 99%. Since, when the considered scenario set is finite, it is very likely that

no scenario exhausts the capital buffer exactly, we widen our search to the interval

plus/minus 5% around the capital buffer B.

For initially AA-rated obligors, none of the considered scenarios completely ex-

hausts the capital buffer. In case of initially BB-rated obligors, however, reverse stress

test scenarios exist. The most likely reverse stress test scenarios are shown in Table 11.41

41No risk factor takes its boundary value.
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z x c1 c2 Probability

GDP t-copula, normal -0.5 -0.0086 -2.3278 -1.0172 1.3363·10−5

t-copula, GPD -0.5 -0.0002 -0.4920 -1.2309 1.5716·10−5

Clayton copula, normal -1.0 -0.0044 -2.3278 -1.0172 2.2230·10−5

Clayton copula, GPD -0.5 -0.0002 -1.4099 -1.2309 2.3887·10−5

S&P 500 Clayton copula, normal -0.5 -0.0952 -0.4920 -1.4446 2.0662·10−6

Clayton copula, GPD -0.5 -0.0952 -0.0330 -1.4446 1.1456·10−5

Table 11: Most likely reverse stress test scenarios for an initially BB-rated portfolio based on various
model specifications.

A negative value of the latent systematic risk factor, a slight downturn of the economy

(GDP) or, respectively, a medium downturn of the economy (S&P 500), a general decrease

in the level of interest rates (first principal component), and an increased steepness of

the interest rate curve through relatively decreasing interest rates for short maturities

compared to increasing interest rates for long maturities (second principal component)

represent the most probable scenario exhausting the capital buffer. This result is robust

with respect to the employed model specification. The absolute probabilities for the

occurrence of the most likely reverse stress test scenarios exhibited in Table 11 depend

on the step size of the grid search. Therefore, these probabilities can only be used for

finding the most likely scenario within the set of all identified reverse stress test scenarios.

The stressed term structure of risk-free interest rates in the most likely reverse stress test

scenarios is shown in Figure 11.
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Figure 11: Impact of the most likely reverse stress test scenarios on the term structure of risk-free interest
rates. The upper (left: t-copula, normal, right: t-copula, GPD) and middle (left: Clayton copula, normal,
right: Clayton copula, GPD) figures show the impact in case of the GDP-log-return specification. The
lower two figures illustrate the case of the S&P 500-log-return specification for a Clayton copula (left:
normal, right: GPD). The empirical term structure is calculated as specified in Equation 4.2 from the
last observed yield-to-maturities on January 4, 2011, and the realizations of the first and second principal
components in the most likely reverse stress test scenarios.

First, changes in the first principal component that correspond to the most likely reverse

stress test scenarios push the whole term structure downwards. Second, the corre-

sponding changes in the second principal component lead also to decreased short-term

interest rates and to increased long-term interest rates. The sum of these effects leads to

decreased short-term interest rates and considerably increased long-term interest rates.

For the assumed bank, which is performing positive maturity transformation, this

induces a double negative impact: Negative cash flows occurring at earlier points in time

are discounted by an decreased short-term interest rate, while positive cash flows at later

points in time are discounted by considerably increased long-term interest rates.

5 Conclusion

In this paper, we have presented a macroeconomic reverse stress test framework and

showed how to implement it empirically. Beside this empirical implementation, the
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innovation of our contribution is the usage of principal components in order to capture

changes of risk-free interest rates and, hence, to keep the model tractable.

For a given stylized bank portfolio, we have determined reverse stress test scenar-

ios for several model specifications, in particular for different marginal distributions for

the systematic risk factors and for different multivariate dependence structures. In case

of initially AA-rated obligors, we could not detect a reverse stress test scenario, but for

initially BB-rated obligors, we found that a negative realization of the latent systematic

credit risk factor, a slight, or respectively, medium downturn of the economy, and, on

the one hand, decreased risk-free interest rates for short-term maturities and, on the

other hand, increased risk-free interest rates for long-term maturities represent the most

probable scenario exhausting the capital buffer. However, the results also show that

reverse stress tests are exposed to considerable model and estimation risk which makes

numerous robustness checks necessary.

Quantitative reverse stress tests confront banks with considerable challenges. Be-

side the problem of finding those scenarios in which the viability of the bank is

threatened, probabilities of occurrence are needed to find the most likely one of these

scenarios. Further research could deal for example with algorithms for finding reverse

stress test scenarios that are more intelligent than the simple grid search employed in

this paper. This would allow to handle extensions with more systematic risk factors

and permit the usage of a smaller step size. Of course, as long as no reverse stress test

standard models are approved, in addition, further research using other frameworks is

needed in order to develop appropriate models meeting the regulatory requirements.
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Drüen, J., & Florin, S. (2010). Reverse Stresstests: Stress-Kennzahlen für die praktische

Banksteuerung. Risiko Manager [In German] , 10 , 1,6-9.
Frey, R., & McNeil, A. J. (2003). Dependent defaults in models of portfolio credit risk.

Journal of Risk , 6 , 59-92.
FSA. (2008). Stress and Scenario Testing. Consultant Paper 08/24.
FSA. (2009). Stress and Scenario Testing, Feedback on CP08/24 and Final Rules. Policy

Statement 09/20.
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